Petroleum
Petroleum oily, flammable liquid that occurs
naturally in deposits, usually beneath the surface of the earth; it is also
called crude oil. It consists principally of a mixture of hydrocarbons , with traces of various
nitrogenous and sulfurous compounds.
Origin and Natural Occurrence
During the past 600 million years incompletely decayed plant and animal remains have become buried under thick layers of rock. It is believed that petroleum consists of the remains of these organisms but it is the small microscopic plankton organism remains that are largely responsible for the relatively high organic carbon content of fine-grained sediments like the Chattanooga shale which are the principle source rocks for petroleum.
Origin and Natural Occurrence
During the past 600 million years incompletely decayed plant and animal remains have become buried under thick layers of rock. It is believed that petroleum consists of the remains of these organisms but it is the small microscopic plankton organism remains that are largely responsible for the relatively high organic carbon content of fine-grained sediments like the Chattanooga shale which are the principle source rocks for petroleum.
Exploration and Drilling of Wells
Because of the subterranean origin of petroleum it must be extracted by means of wells . Until an exploratory well, or wildcat, has been dug, there is no sure way of knowing whether or not petroleum lies under a particular site. In order to reduce the number of exploratory wells drilled, scientific methods are used to pick the most promising sites. Sensitive instruments, such as the gravimeter, the magnetometer, and the seismograph, may be used to find subsurface rock formations that can hold crude oil. Drilling is a fairly complex and often risky process. Some wells must be dug several miles deep before petroleum deposits are reached. Many are now drilled offshore from platforms standing in the ocean bed. Usually the petroleum from a new well will come to the surface under its own pressure. Later the crude oil must be pumped out or forced to the surface by injecting water, air, natural gas, steam, carbon dioxide, or another substance into the deposits. Enhanced recovery techniques have increased the percentage of oil that can be extracted from a field.
Composition and Refining of Petroleum
The physical properties and exact chemical composition of crude oil varies from one locality to another. The different hydrocarbon components of petroleum are dissolved natural gas , gasoline, benzine , naphtha , kerosene , diesel fuel and light heating oils, heavy heating oils, and finally tars of various weights (see tar and pitch ). The crude oil is usually sent from a well to a refinery in pipelines (see under pipe ) or tanker ships.
The hydrocarbon components are separated from each other by various refining processes. In a process called fractional distillation petroleum is heated and sent into a tower. The vapors of the different components condense on collectors at different heights in the tower. The separated fractions are then drawn from the collectors and further processed into various petroleum products. One of the many products of crude oil is a light substance with little color that is rich in gasoline . Another is a black tarry substance that is rich in asphalt .
As the lighter fractions, especially gasoline, are in the greatest demand, so-called cracking processes have been developed in which heat, pressure, and certain catalysts are used to break up the large molecules of heavy hydrocarbons into small molecules of light hydrocarbons. Some of the heavier fractions find eventual use as lubricating oils, paraffins , and highly refined medicinal substances such as petroleum .
See also petrochemicals .
History and Development of Petroleum
Petroleum has been known throughout historical time. It was used in mortar, for coating walls and boat hulls, and as a fire weapon in defensive warfare. Native Americans used it in magic and medicine and in making paints. Pioneers bought it from the Native Americans for medicinal use and called it Seneca oil and Genesee oil. In Europe it was scooped from streams or holes in the ground, and in the early 19th cent. small quantities were made from shale. In 1815 several streets in Prague were lighted with petroleum lamps.
The modern petroleum industry began in 1859, when the American oil pioneer E. L. Drake drilled a producing well on Oil Creek in Pennsylvania at a place that later became Titusville. Many wells were drilled in the region. Kerosene was the chief finished product, and kerosene lamps soon replaced whale oil lamps and candles in general use. Little use other than as lamp fuel was made of petroleum until the development of the gasoline engine and its application to automobiles, trucks, tractors, and airplanes. Today the world is heavily dependent on petroleum for motive power, lubrication, fuel, dyes, drugs, and many synthetics. The widespread use of petroleum has created serious environmental problems. The great quantities that are burned as fuels generate most of the air pollution in industrialized countries, and oil spilled from tankers and offshore wells has polluted oceans and coastlines.
Hydrocracking
In 1920 a plant for the
commercial hydrogenation of brown coal was commissioned at Leuna
in Germany.[8]Hydrocracking is a catalytic cracking process assisted by the presence of an elevated partial pressure of hydrogen gas. Similar to the hydrotreater, the function of hydrogen is the purification of the hydrocarbon stream from sulfur and nitrogen hetero-atoms.
The products of this process are saturated hydrocarbons; depending on the reaction conditions (temperature, pressure, catalyst activity) these products range from ethane, LPG to heavier hydrocarbons comprising mostly of isoparaffins. Hydrocracking is normally facilitated by a bi functional catalyst that is capable of rearranging and breaking hydrocarbon chains as well as adding hydrogen to aromatics and olefins to produce naphthenes and alkanes.
Major products from hydrocracking are jet fuel and diesel, while also high octane rating gasoline fractions and LPG are produced. All these products have a very low content of sulfur and other contaminants.
It is very common in India, Europe and Asia because those regions have high demand for diesel and kerosene. In the US, Fluid Catalytic Cracking is more common because the demand for gasoline is higher.
Steam cracking
Steam cracking is a petrochemical process in which saturated hydrocarbons are broken down into smaller,
often unsaturated, hydrocarbons. It is the principal industrial method for
producing the lighter alkenes (or commonly olefins), including ethene (or ethylene) and propene (or propylene).In steam cracking, a gaseous or liquid hydrocarbon feed like naphtha, LPG or ethane is diluted with steam and briefly heated in a furnace without the presence of oxygen. Typically, the reaction temperature is very high, at around 850°C, but the reaction is only allowed to take place very briefly. In modern cracking furnaces, the residence time is even reduced to milliseconds, resulting in gas velocities faster than the speed of sound, to improve yield. After the cracking temperature has been reached, the gas is quickly quenched to stop the reaction in a transfer line heat exchanger.
The products produced in the reaction depend on the composition of the feed, the hydrocarbon to steam ratio and on the cracking temperature and furnace residence time.
Light hydrocarbon feeds such as ethane, LPGs or light naphtha give product streams rich in the lighter alkenes, including ethylene, propylene, and butadiene. Heavier hydrocarbon (full range and heavy naphthas as well as other refinery products) feeds give some of these, but also give products rich in aromatic hydrocarbons and hydrocarbons suitable for inclusion in gasoline or fuel oil. The higher cracking temperature (also referred to as severity) favours the production of ethene and benzene, whereas lower severity produces higher amounts of propene, C4-hydrocarbons and liquid products. The process also results in the slow deposition of coke, a form of carbon, on the reactor walls. This degrades the efficiency of the reactor, so reaction conditions are designed to minimize this. Nonetheless, a steam cracking furnace can usually only run for a few months at a time between de-cokings. Decokes require the furnace to be isolated from the process and then a flow of steam or a steam/air mixture is passed through the furnace coils. This converts the hard solid carbon layer to carbon monoxide and carbon dioxide. Once this reaction is complete, the furnace can be returned to service.
Thermal cracking
The first thermal cracking
method, the Shukhov
cracking process, was invented by Russian engineer Vladimir Shukhov, in the Russian empire,
Patent No. 12926, November 27, 1891.]William Merriam Burton developed one of the earliest thermal cracking processes in 1912 which operated at 700 - 750 °F (370 - 400 ÂșC) and an absolute pressure of 90 psi (620 kPa) and was known as the Burton process. Shortly thereafter, in 1921, C.P. Dubbs, an employee of the Universal Oil ProductsCompany, developed a somewhat more advanced thermal cracking process which operated at 750-860 °F (400-460 °C) and was known as the Dubbs process .The Dubbs process was used extensively by many refineries until the early 1940s when catalytic cracking came into use.
Modern high-pressure thermal cracking operates at absolute pressures of about 7,000 kPa. An overall process of disproportionation can be observed, where "light", hydrogen-rich products are formed at the expense of heavier molecules which condense and are depleted of hydrogen. The actual reaction is known as homolytic fission and produces alkenes, which are the basis for the economically important production of polymers.
A large number of chemical reactions take place during steam cracking, most of them based on free radicals. Computer simulations aimed at modeling what takes place during steam cracking have included hundreds or even thousands of reactions in their models. The main reactions that take place include:
Initiation reactions, where a single molecule breaks apart into two free radicals. Only a small fraction of the feed molecules actually undergo initiation, but these reactions are necessary to produce the free radicals that drive the rest of the reactions. In steam cracking, initiation usually involves breaking a chemical bond between two carbon atoms, rather than the bond between a carbon and a hydrogen atom.
CH3CH3 → 2 CH3•
Hydrogen abstraction, where a free radical removes a hydrogen
atom from another molecule, turning the second molecule into a free radical.
CH3• + CH3CH3 → CH4 + CH3CH2•
Radical decomposition, where a free radical breaks apart into
two molecules, one an alkene, the other a free radical. This is the process
that results in the alkene products of steam cracking.
CH3CH2• → CH2=CH2 + H•
Radical addition, the reverse of radical decomposition, in
which a radical reacts with an alkene to form a single, larger free radical.
These processes are involved in forming the aromatic products that result when
heavier feedstocks are used.
CH3CH2• + CH2=CH2 → CH3CH2CH2CH2•
Termination reactions, which happen when two free
radicals react with each other to produce products that are not free radicals.
Two common forms of termination are recombination, where the two
radicals combine to form one larger molecule, and disproportionation,
where one radical transfers a hydrogen atom to the other, giving an alkene and
an alkane.
CH3• + CH3CH2• → CH3CH2CH3
CH3CH2• + CH3CH2• → CH2=CH2
+ CH3CH3
Thermal cracking is an example of
a reaction whose energetics are dominated by entropy (∆S°) rather than by
enthalpy (∆H°) in the Gibbs Free Energy equation ∆G°=∆H°-T∆S°. Although the
bond dissociation energy D for a carbon-carbon single bond is relatively high
(about 375 kJ/mol) and cracking is highly endothermic, the large positive
entropy change resulting from the fragmentation of one large molecule into
several smaller pieces, together with the extremely high temperature, makes
T∆S° term larger than the ∆H° term, thereby favoring the cracking reaction.Here is an example of cracking with butane CH3-CH2-CH2-CH3
- 1st possibility (48%): breaking is done on
the CH3-CH2 bond.
after a certain number of steps, we will obtain an alkane and an alkene: CH4 + CH2=CH-CH3
- 2nd possibility (38%): breaking is done on
the CH2-CH2 bond.
after a certain number of steps, we will obtain an alkane and an alkene from different types: CH3-CH3 + CH2=CH2
- 3rd possibility (14%): breaking of a C-H bond
Petroleum is a complex mixture of organic liquids called crude oil and natural gas, which occurs naturally in the ground and was formed millions of years ago. Crude oil varies from oilfield to oilfield in colour and composition, from a pale yellow low viscosity liquid to heavy black 'treacle' consistencies.
Crude oil and natural gas are extracted from the ground, on land or under the oceans, by sinking an oil well and are then transported by pipeline and/or ship to refineries where their components are processed into refined products. Crude oil and natural gas are of little use in their raw state; their value lies in what is created from them: fuels, lubricating oils, waxes, asphalt, petrochemicals and pipeline quality natural gas.
An oil refinery is an organised and coordinated arrangement of manufacturing processes designed to produce physical and chemical changes in crude oil to convert it into everyday products like petrol, diesel, lubricating oil, fuel oil and bitumen.
As crude oil comes from the well it contains a mixture of hydrocarbon compounds and relatively small quantities of other materials such as oxygen, nitrogen, sulphur, salt and water. In the refinery, most of these non - hydrocarbon substances are removed and the oil is broken down into its various components, and blended into useful products.
Natural gas from the well, while principally methane, contains quantities of other hydrocarbons - ethane, propane, butane, pentane and also carbon dioxide and water. These components are separated from the methane at a gas fractionation plant.
Petroleum hydrocarbon structures
Petroleum consists of three main hydrocarbon groups:
Paraffins
These consist of straight or
branched carbon rings saturated with hydrogen atoms, the simplest of which is
methane (CH4) the main ingredient of natural gas. Others in this
group include ethane (C2H6), and propane (C3H8).
With very few carbon atoms (C1
to C4) are light in density and are gases under normal atmospheric
pressure. Chemically paraffins are very stable compounds.
Naphthenes
Naphthenes consist of carbon
rings, sometimes with side chains, saturated with hydrogen atoms. Naphthenes
are chemically stable, they occur naturally in crude oil and have properties
similar to paraffins.
aromatic hydrocarbons are
compounds that contain a ring of six carbon atoms with alternating double and
single bonds and six attached hydrogen atoms. This type of structure is known
as a benzene ring. They occur naturally in crude oil, and can also be created
by the refining process.
Small quantities of a crude oil may be composed of compounds containing oxygen, nitrogen, sulphur and metals. Sulphur content ranges from traces to more than 5 per cent. If a crude oil contains appreciable quantities of sulphur it is called a sour crude; if it contains little or no sulphur it is called a sweet crude.
The refining process
Every refinery begins with the separation of crude oil into different fractions by distillation.
The fractions are further treated to convert them into mixtures of more useful saleable products by various methods such as cracking, reforming, alkylation, polymerisation and isomerisation. These mixtures of new compounds are then separated using methods such as fractionation and solvent extraction. Impurities are removed by various methods, e.g. dehydration, desalting, sulphur removal and hydrotreating.
Refinery processes have developed in response to changing market demands for certain products. With the advent of the internal combustion engine the main task of refineries became the production of petrol. The quantities of petrol available from distillation alone was insufficient to satisfy consumer demand. Refineries began to look for ways to produce more and better quality petrol. Two types of processes have been developed:
- breaking down large, heavy hydrocarbon molecules
- reshaping or rebuilding hydrocarbon molecules.
Because crude oil is a mixture of hydrocarbons with different boiling temperatures, it can be separated by distillation into groups of hydrocarbons that boil between two specified boiling points. Two types of distillation are performed: atmospheric and vacuum.
Atmospheric distillation takes place in a distilling column at or near atmospheric pressure. The crude oil is heated to 350 - 400oC and the vapour and liquid are piped into the distilling column. The liquid falls to the bottom and the vapour rises, passing through a series of perforated trays (sieve trays). Heavier hydrocarbons condense more quickly and settle on lower trays and lighter hydrocarbons remain as a vapour longer and condense on higher trays.
Liquid fractions are drawn from the trays and removed. In this way the light gases, methane, ethane, propane and butane pass out the top of the column, petrol is formed in the top trays, kerosene and gas oils in the middle, and fuel oils at the bottom. Residue drawn of the bottom may be burned as fuel, processed into lubricating oils, waxes and bitumen or used as feedstock for cracking units.
To recover additional heavy distillates from this residue, it may be piped to a second distillation column where the process is repeated under vacuum, called vacuum distillation. This allows heavy hydrocarbons with boiling points of 450oC and higher to be separated without them partly cracking into unwanted products such as coke and gas.
The heavy distillates recovered by vacuum distillation can be converted into lubricating oils by a variety of processes. The most common of these is called solvent extraction. In one version of this process the heavy distillate is washed with a liquid which does not dissolve in it but which dissolves (and so extracts) the non-lubricating oil components out of it. Another version uses a liquid which does not dissolve in it but which causes the non-lubricating oil components to precipitate (as an extract) from it. Other processes exist which remove impurities by adsorption onto a highly porous solid or which remove any waxes that may be present by causing them to crystallise and precipitate out.
Reforming
Reforming is a process which uses heat, pressure and a catalyst (usually containing platinum) to bring about chemical reactions which upgrade naphthas into high octane petrol and petrochemical feedstock. The naphthas are hydrocarbon mixtures containing many paraffins and naphthenes. In Australia, this naphtha feedstock comes from the crudes oil distillation or catalytic cracking processes, but overseas it also comes from thermal cracking and hydrocracking processes. Reforming converts a portion of these compounds to isoparaffins and aromatics, which are used to blend higher octane petrol.
- paraffins are converted to isoparaffins
- paraffins are converted to naphthenes
- naphthenes are converted to aromatics
|
catalyst
|
|
|
|
|
|
heptane
|
->
|
toluene
|
+
|
hydrogen
|
|
|
|
C7H16
|
->
|
C7H8
|
+
|
4H2
|
|
|
catalyst
|
|
|
|
|
|
cyclohexane
|
->
|
benzene
|
+
|
hydrogen
|
|
|
|
C6H12
|
->
|
C6H6
|
+
|
3H2
|
|
Cracking processes break down heavier hydrocarbon molecules (high boiling point oils) into lighter products such as petrol and diesel. These processes include catalytic cracking, thermal cracking and hydrocracking.
e.g.
A typical reaction:
|
catalyst
|
|
|
|
|
|
|
C16H34
|
->
|
C8H18
|
+
|
C8H16
|
|
The cracking reaction yields petrol, LPG, unsaturated olefin compounds, cracked gas oils, a liquid residue called cycle oil, light gases and a solid coke residue. Cycle oil is recycled to cause further breakdown and the coke, which forms a layer on the catalyst, is removed by burning. The other products are passed through a fractionator to be separated and separately processed.
Fluid catalytic cracking uses a catalyst in the form of a very fine powder which flows like a liquid when agitated by steam, air or vapour. Feedstock entering the process immediately meets a stream of very hot catalyst and vaporises. The resulting vapours keep the catalyst fluidised as it passes into the reactor, where the cracking takes place and where it is fluidised by the hydrocarbon vapour. The catalyst next passes to a steam stripping section where most of the volatile hydrocarbons are removed. It then passes to a regenerator vessel where it is fluidised by a mixture of air and the products of combustion which are produced as the coke on the catalyst is burnt off. The catalyst then flows back to the reactor. The catalyst thus undergoes a continuous circulation between the reactor, stripper and regenerator sections.
The catalyst is usually a mixture of aluminium oxide and silica. Most recently, the introduction of synthetic zeolite catalysts has allowed much shorter reaction times and improved yields and octane numbers of the cracked gasolines.
Thermal cracking uses heat to break down the residue from vacuum distillation. The lighter elements produced from this process can be made into distillate fuels and petrol. Cracked gases are converted to petrol blending components by alkylation or polymerisation. Naphtha is upgraded to high quality petrol by reforming. Gas oil can be used as diesel fuel or can be converted to petrol by hydrocracking. The heavy residue is converted into residual oil or coke which is used in the manufacture of electrodes, graphite and carbides.
This process is the oldest technology and is not used in Australia.
Hydrocracking can increase the yield of petrol components, as well as being used to produce light distillates. It produces no residues, only light oils. Hydrocracking is catalytic cracking in the presence of hydrogen. The extra hydrogen saturates, or hydrogenates, the chemical bonds of the cracked hydrocarbons and creates isomers with the desired characteristics. Hydrocracking is also a treating process, because the hydrogen combines with contaminants such as sulphur and nitrogen, allowing them to be removed.
Gas oil feed is mixed with hydrogen, heated, and sent to a reactor vessel with a fixed bed catalyst, where cracking and hydrogenation take place. Products are sent to a fractionator to be separated. The hydrogen is recycled. Residue from this reaction is mixed again with hydrogen, reheated, and sent to a second reactor for further cracking under higher temperatures and pressures.
In addition to cracked naphtha for making petrol, hydrocracking yields light gases useful for refinery fuel, or alkylation as well as components for high quality fuel oils, lube oils and petrochemical feedstocks.
Following the cracking processes it is necessary to build or rearrange some of the lighter hydrocarbon molecules into high quality petrol or jet fuel blending components or into petrochemicals. The former can be achieved by several chemical process such as alkylation and isomerisation.
Alkylation
Olefins such as propylene and butylene are produced by catalytic and thermal cracking. Alkylation refers to the chemical bonding of these light molecules with isobutane to form larger branched-chain molecules (isoparaffins) that make high octane petrol.
Olefins and isobutane are mixed with an acid catalyst and cooled. They react to form alkylate, plus some normal butane, isobutane and propane. The resulting liquid is neutralised and separated in a series of distillation columns. Isobutane is recycled as feed and butane and propane sold as liquid petroleum gas (LPG).
e.g.
|
|
|
catalyst
|
|
|
|
isobutane
|
+
|
butylene
|
->
|
isooctane
|
|
|
|
C4H10
|
+
|
C4H8
|
->
|
C8H18
|
|
Isomerisation refers to chemical rearrangement of straight-chain hydrocarbons (paraffins), so that they contain branches attached to the main chain (isoparaffins). This is done for two reasons:
- they create extra isobutane feed for alkylation
- they improve the octane of straight run pentanes and hexanes and hence make them into better petrol blending components.
Pentanes and hexanes are the lighter components of petrol. Isomerisation can be used to improve petrol quality by converting these hydrocarbons to higher octane isomers. The process is the same as for butane isomerisation.
Polymerisation
Under pressure and temperature, over an acidic catalyst, light unsaturated hydrocarbon molecules react and combine with each other to form larger hydrocarbon molecules. Such process can be used to react butenes (olefin molecules with four carbon atoms) with iso-butane (branched paraffin molecules, or isoparaffins, with four carbon atoms) to obtain a high octane olefinic petrol blending component called polymer gasoline.
Hydrotreating and sulphur plants
A number of contaminants are found in crude oil. As the fractions travel through the refinery processing units, these impurities can damage the equipment, the catalysts and the quality of the products. There are also legal limits on the contents of some impurities, like sulphur, in products.
Hydrotreating is one way of removing many of the contaminants from many of the intermediate or final products. In the hydrotreating process, the entering feedstock is mixed with hydrogen and heated to 300 - 380oC. The oil combined with the hydrogen then enters a reactor loaded with a catalyst which promotes several reactions:
- hydrogen combines with sulphur to form hydrogen sulphide (H2S)
- nitrogen compounds are converted to ammonia
- any metals contained in the oil are deposited on the catalyst
- some of the olefins, aromatics or naphthenes become saturated with hydrogen to become paraffins and some cracking takes place, causing the creation of some methane, ethane, propane and butanes.
The hydrogen sulphide created from hydrotreating is a toxic gas that needs further treatment. The usual process involves two steps:
- the removal of the hydrogen sulphide gas from the hydrocarbon stream
- the conversion of hydrogen sulphide to elemental sulphur, a non-toxic and useful chemical.
Conversion of the concentrated hydrogen sulphide gas into sulphur occurs in two stages.
- Combustion of part of the H2S stream in a furnace, producing sulphur dioxide (SO2) water (H2O) and sulphur (S).
|
2H2S
|
+
|
2O2
|
->
|
SO2
|
+
|
S
|
+
|
2H2O
|
|
- Reaction of the remainder of the H2S with the combustion products in the presence of a catalyst. The H2S reacts with the SO2 to form sulphur.
|
2H2S
|
+
|
2O2
|
->
|
3S
|
+
|
2H2O
|
|
Refineries and the environment
Air, water and land can all be affected by refinery operations. Refineries are well aware of their responsibility to the community and employ a variety of processes to safeguard the environment.
The processes described below are those used by the Shell refinery at Geelong in Victoria, but all refineries employ similar techniques in managing the environmental aspects of refining.
Air
Preserving air quality around a refinery involves controlling the following emissions:
- sulphur oxides
- hydrocarbon vapours
- smoke
- smells
Many of the products used in a refinery produce hydrocarbon vapours. The escape of vapours to atmosphere are prevented by various means. Floating roofs are installed in tanks to prevent evaporation and so that there is no space for vapour to gather in the tanks. Where floating roofs cannot be used, the vapours from the tanks are collected in a vapour recovery system and absorbed back into the product stream. In addition, pumps and valves are routinely checked for vapour emissions and repaired if a leakage is found.
Smoke is formed when the burning mixture contains insufficient oxygen or is not sufficiently mixed. Modern furnace control systems prevent this from happening during normal operation.
Smells are the most difficult emission to control and the easiest to detect. Refinery smells are generally associated with compounds containing sulphur, where even tiny losses are sufficient to cause a noticeable odour.
Water
Aqueous effluent's consist of cooling water, surface water and process water.
The majority of the water discharged from the refinery has been used for cooling the various process streams. The cooling water does not actually come into contact with the process material and so has very little contamination. The cooling water passes through large "interceptors" which separate any oil from minute leaks etc., prior to discharge. The cooling water system at Geelong Refinery is a once-through system with no recirculation.
Rainwater falling on the refinery site must be treated before discharge to ensure no oily material washed off process equipment leaves the refinery. This is done first by passing the water through smaller "plant oil catchers", which each treat rainwater from separate areas on the site, and then all the streams pass to large "interceptors" similar to those used for cooling water. The rainwater from the production areas is further treated in a Dissolved Air Flotation (DAF) unit. This unit cleans the water by using a flocculation agent to collect any remaining particles or oil droplets and floating the resulting flock to the surface with millions of tiny air bubbles. At the surface the flock is skimmed off and the clean water discharged.
Process water has actually come into contact with the process streams and so can contain significant contamination. This water is treated in the "sour water treater" where the contaminants (mostly ammonia and hydrogen sulphide) are removed and then recovered or destroyed in a downstream plant. The process water, when treated in this way, can be reused in parts of the refinery and discharged through the process area rainwater treatment system and the DAF unit.
Any treated process water that is not reused is discharged as Trade Waste to the sewerage system. This trade waste also includes the effluent from the refinery sewage treatment plant and a portion of treated water from the DAF unit.
As most refineries import and export many feed materials and products by ship, the refinery and harbour authorities are prepared for spillage from the ship or pier. In the event of such a spill, equipment is always on standby at the refinery and it is supported by the facilities of the Australian Marine Oil Spill Centre at Geelong, Victoria.
Land
The refinery safeguards the land environment by ensuring the appropriate disposal of all wastes.
Within the refinery, all hydrocarbon wastes are recycled through the refinery slops system. This system consists of a network of collection pipes and a series of dewatering tanks. The recovered hydrocarbon is reprocessed through the distillation units.
Wastes that cannot be reprocessed are either recycled to manufacturers (e.g. some spent catalysts can be reprocessed), disposed of in EPA-approved facilities off-site, or chemically treated on-site to form inert materials which can be disposed to land-fill within the refinery.
Waste movements within the refinery require a "Process liquid, Sludge and Solid waste disposal permit". Wastes that go off-site must have an EPA "Waste Transport Permit".
No comments:
Post a Comment